Double Layer Capacitors

Form A

Fig. 1 Component outline

Form B

FEATURES

- Polarized capacitor with high charge density, alternative product to rechargeable backup batteries

RoHS COMPLIANT

- Dielectric: electric double layer
- Radial leads, cylindrical case, insulated with a blue vinyl sleeve
- Available in both vertical and low-profile versions
- Unlimited charge and discharge cycle numbers
- No charge-discharge control circuitry and no series resistor necessary
- Maintenance-free, no periodic replacement or service necessary
- Ecologically beneficial (no Cd, no Li)
- Lead (Pb)-free versions are RoHS compliant

APPLICATIONS

- Energy storage, for backup of semiconductor memories (CMOS) in all fields of electronics
- Telecommunication, audio-video, EDP
- General industrial, clock and timer systems

MARKING

The capacitors are marked with the following information:

- Rated capacitance (in F)
- Rated voltage (in V)
- Date code, in accordance with IEC 60062
- Name of manufacturer
- Negative terminal identification
- Upper category temperature (at $85^{\circ} \mathrm{C}$ types only)

QUICK REFERENCE DATA				
	VALUE			
DESCRIPTION	STANDARD FORM A	HIGH VOLTAGE FORM A	HIGH TEMPERATURE FORM A	VERTICAL, MINIATURIZED FORM B
Nominal case sizes ($\varnothing \mathrm{D} \mathrm{x} \mathrm{L} \mathrm{in} \mathrm{mm)}$	13×7 and 21×7.5	13×9 and 21×9	13×9 and 21×9	11.5×13 (vertical)
Rated capacitance range, C_{R}	0.047 to 1.0 F	0.047 to 0.68 F	0.047 to 0.68 F	0.047 to 0.33 F
Tolerance on C_{R} at $20^{\circ} \mathrm{C}$	- 20 to + 80%			
Rated voltage, U_{R}	5.5 V	6.3 V	5.5 V	5.5 V
Maximum surge voltage, U_{S}	6.3 V	7.0 V	6.3 V	6.3 V
Category temperature range	-25 to $+70^{\circ} \mathrm{C}$	-25 to $+70^{\circ} \mathrm{C}$	-25 to $+85^{\circ} \mathrm{C}$	-25 to $+70^{\circ} \mathrm{C}$
Useful life at U_{R} : at $85^{\circ} \mathrm{C}$ at $70^{\circ} \mathrm{C}$ at $40^{\circ} \mathrm{C}$ at $25^{\circ} \mathrm{C}$	1000 hours 8000 hours 23000 hours	1000 hours 8000 hours 23000 hours	1000 hours 2800 hours 23000 hours 64000 hours	1000 hours 8000 hours 23000 hours
Shelf life at 0 V	1000 hours at upper category temperature			
Climatic category IEC 60068	25/070/21	25/070/21	25/085/21	25/070/21

SELECTION CHART FOR C_{R}, $\mathbf{U}_{\mathbf{R}}$ AND FORM AT UPPER CATEGORY TEMPERATURE (UCT)

C_{R} (F)	FORM	$\mathrm{U}_{\mathrm{R}}=5.5 \mathrm{~V}$		$\mathrm{U}_{\mathrm{R}}=6.3 \mathrm{~V}$
		UCT $=85{ }^{\circ} \mathrm{C}$	UCT $=70{ }^{\circ} \mathrm{C}$	UCT $=70^{\circ} \mathrm{C}$
0.047	A	13×9	13×7	13×9
	B	-	11.5×13	-
0.1	A	13×9	13×7	13×9
	B	-	11.5×13	-
0.22	A	-	13×7	-
	B	-	11.5×13	-
0.33	A	-	13×7	-
	B	-	11.5×13	-
0.47	A	21×9	21×7.5	21×9
	B	-	-	-
0.68	A	21×9	-	21×9
	B	-	-	-
1.0	A	-	21×7.5	-

DIMENSIONS in millimeters AND AVAILABLE FORMS

Fig. 2 FormA: Low profile

Fig. 3 Form B: Vertical

DIMENSIONS in millimeters, MASS AND PACKAGING QUANTITIES						
NOMINAL CASE SIZE $\boldsymbol{\sigma} \mathbf{~} \mathbf{L}(\mathbf{m m})$	CASE CODE	FORM	$\boldsymbol{\sigma} \mathrm{D}_{\text {max. }}$	$\mathbf{L}_{\text {max. }}$	MASS $\mathbf{(g)}$	PACKAGING QUANTITIES
11.5×13	1	B	11.8	13.5	≈ 1.5	2000
13×7	2	A	13.5	7.5	≈ 2.8	1000
13×9	3	A	13.5	9.5	≈ 3.4	1000
21×7.5	4	A	21.5	8.0	≈ 7.1	500
21×9	5	A	21.5	9.5	≈ 8.8	500

Note
Detailed tape dimensions see section 'PACKAGING'

Vishay BCcomponents Double Layer Capacitors

ELECTRICAL DATA	
SYMBOL	DESCRIPTION
$\mathbf{C}_{\mathbf{R}}$	rated capacitance, tolerance $-20 /+80 \%$, measured by constant current discharge method
UCT	upper category temperature
$\mathbf{I}_{\mathbf{L}}$	max. leakage current after 30 minutes at $U_{\mathbf{R}}$
$\mathbf{R}_{\mathbf{I}}$	max. internal resistance at 1 kHz

Note

Unless otherwise specified, all electrical values in Table 1 apply at $\mathrm{T}_{\mathrm{amb}}=20^{\circ} \mathrm{C}, \mathrm{P}=86$ to 106 kPa and $\mathrm{RH}=45$ to 75%.

ORDERING EXAMPLE

Double layer capacitor 196 series
1.0 F/5.5 V

Nominal case size: $\varnothing 21 \times 7.5 \mathrm{~mm}$; Form A
Ordering code: MAL219612105E3
Former 12 NC: 222219612105

Table 1

ELECTRICAL DATA AND ORDERING INFORMATION

$\begin{aligned} & \mathrm{U}_{\mathrm{R}} \\ & (\mathrm{~V}) \end{aligned}$	$\begin{aligned} & C_{R} \\ & (F) \end{aligned}$	```NOMINAL CASE SIZE ØD x L (mm)```	CASE CODE	FORM	UCT $\left({ }^{\circ} \mathrm{C}\right)$	L 30 min ($\mu \mathrm{A}$)	$\begin{gathered} \mathbf{R}_{\mathbf{l}} \\ \mathbf{1} \mathrm{kHz} \\ (\Omega) \end{gathered}$	ORDERING CODE
Standard series								
5.5	0.047	13×7	2	A	70	69	120	MAL219612473E3
	0.1	13×7	2	A	70	100	75	MAL219612104E3
	0.22	13×7	2	A	70	135	75	MAL219612224E3
	0.33	13×7	2	A	70	182	75	MAL219612334E3
	0.47	21×7.5	4	A	70	216	30	MAL219612474E3
	1.0	21×7.5	4	A	70	315	30	MAL219612105E3
High temperature series								
5.5	0.047	13×9	3	A	85	69	300	MAL219622473E3
	0.1	13×9	3	A	85	100	200	MAL219622104E3
	0.47	21×9	5	A	85	216	50	MAL219622474E3
	0.68	21×9	5	A	85	260	50	MAL219622684E3
Vertical, miniaturized series								
5.5	0.047	11.5×13	1	B	70	69	120	MAL219632473E3
	0.1	11.5×13	1	B	70	100	75	MAL219632104E3
	0.22	11.5×13	1	B	70	135	75	MAL219632224E3
	0.33	11.5×13	1	B	70	182	75	MAL219632334E3
High voltage series								
6.3	0.047	13×9	3	A	70	69	300	MAL219613473E3
	0.1	13×9	3	A	70	100	200	MAL219613104E3
	0.47	21×9	5	A	70	216	50	MAL219613474E3
	0.68	21×9	5	A	70	260	50	MAL219613684E3

MEASURING OF CHARACTERISTICS

CAPACITANCE (C)

Capacitance shall be measured by constant current discharge method.

DISCHARGE CURRENT AS A FUNCTION OF RATED CAPACITANCE

PARAMETER	VALUE					UNIT		
Rated capacitance, C_{R}	0.047	0.1	0.22	0.33	0.47	0.68	1.0	F
Discharge current, I_{D}	0.1							1.0

Fig. 4 Voltage diagram for capacitance measurement

Capacitance value C_{R} is given by discharge current I_{D}, time T and rated voltage U_{R}, according to the following equation:
$C(F)=\frac{I_{D}(m A) \times 10^{-3} \times T(s)}{U_{R}(V)-2}$

Fig. 5 Test circuit for capacitance measurement

INTERNAL RESISTANCE ($\mathbf{R}_{\mathbf{I}}$) AT $1 \mathbf{k H z}$

$\mathrm{R}_{\mathrm{I}}(\Omega)=\frac{\mathrm{V}_{\mathrm{C}}(\mathrm{V})}{10^{-3}}$

LEAKAGE CURRENT (IL)

Leakage current shall be measured after 30 minutes application of rated voltage U_{R} :
$I_{L}(\mu \mathrm{~A})=\frac{\mathrm{V}(\mathrm{V})}{10^{-4}}$

Fig. 7 Test circuit for leakage current

Fig. 8 Typical leakage current as a function of time

Fig. 6 Test circuit for R_{1} measurement

Vishay BCcomponents Double Layer Capacitors

DISCHARGE CHARACTERISTICS

Backup time of 196 DLC series capacitors depends on minimum memory holding voltage and discharge current (corresponding with the current consumption of the load).
For minimum backup times of standard and vertical miniaturized series see Figs 9 and 10 (charging time ≥ 24 hours).

Fig. 9 Typical backup time as a function of discharge current

Fig. 10 Typical backup time as a function of discharge current

Figure 11 shows the backup time when a 196 DLC capacitor is discharged by a constant resistance (charging time ≥ 24 hours).

The horizontal axis shows the initial value of discharge current if 5 V is connected to the capacitor via a fixed series resistor.

EXAMPLE: $1 \mu \mathrm{~A}$ CORRESPONDS TO $5 \mathrm{M} \Omega$ AND $0.1 \mu \mathrm{~A}$ CORRESPONDS TO 50 M Ω

The vertical axis shows that period of time during which the voltage drops from 5 to 2 V .

Fig. 11 Typical backup time as a function of initial discharge current

Table 2
TEST PROCEDURES AND REQUIREMENTS for standard and vertical miniaturized series ($5.5 \mathrm{~V} ; 70^{\circ} \mathrm{C}$)

NAME OF TEST	IEC 60384-4/ EN130300 subclause	PROCEDURE (quick reference)	REQUIREMENTS
Robustness of terminations	4.4	tensile strength; application of loading force for 10 seconds: $20 ~$ 5 (standard series) 5 N (vertical miniaturized series)	no breaks
Resistance to soldering heat	4.5	solder bath; $260^{\circ} \mathrm{C} ; 5$ seconds	$\Delta \mathrm{C} / \mathrm{C}: \pm 10 \%$ R_{I} and $\mathrm{I}_{\mathrm{L}} \leq$ spec. limit
Solderability	4.6	solder bath; $2355^{\circ} \mathrm{C} ; 2$ seconds	$\geq 75 \%$ tinning

Disclaimer

All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

